Ciri-ciri seramik Seramik

Ciri-ciri Mekanikal

Bahan seramik biasanya bahan berion atau berkaca. Kedua-dua bahan ini hampir selalunya pecah sebelum sebarang kecacatan plastik berlaku, yang menyebabkan bahan ini kurang kukuh. Tambahan lagi, disebabkan bahan ini cenderung berciri poros, liang dan kecacatan mikroskopik bertindak sebagai penumpu tekanan, mengurangkan kekuatan, dan tensile strength. Kedua-dua ini memberikan kecenderungan kepada bahan seramik gagal keseluruhannya dan berkecai, berbanding dengan kegagalan perlahan-lahan bahan logam yang membengkok sebelum patah.

Bahan ini menunjukkan kecacatan plastik (boleh membengkok dan bukannya patah). Bagaimanapun, akibat struktur kaku bahan membentuk kristal, terdapat hanya sedikit sistem gelinciran untuk pengkehelan berlaku, oleh itu ia berlaku secara perlahan-lahan. Dengan bahan tidak berkristal bahan berkaca, pengaliran kelikatan merupakan sumber kecacatan plastik, dan juga amat perlahan. oleh itu, ia diabaikan dalam kebanyakan aplikasi bahan seramik

Bahan seramik amat kukuh dalam tekanan, dan mampu beroperasi pada suhu tinggi. Kekerasannya menjadikan ia sesuai sebagai bahan pengkakis, dan mata pemotong dalam perkakasan.

Ciri-ciri pembalikan

Sesetengah bahan seramik mampu menahan suhu amat tinggi tanpa kehilangan ketahanannya. Bahan ini dikenali sebagai bahan refraktori. Ia biasanya mempunyai pengalir haba yang rendah, dan oleh itu digunakan sebagai penebat haba. Sebagai contoh, bahagian perut pesawat ulang alik angkasa diperbuat daripada jubin seramik yang melindungi pesawat angkasa daripada suhu tinggi yang dihadapi ketika kemasukan semula ke atmospera bumi.

Keperluan paling penting untuk bahan refraktori ialah ia tidak akan lembik atau cair, dan ia kekal tidak aktif pada suhu yang diingini. Keperluan akhir berdasarkan pada kedua-dua pereputan diri dan tindak balas dengan bahan campuran lain yang mungkin hadir, setiap satunya boleh membahayakan.

Keporosan menjadi lebih berkait dengan refraktori. Apabila keporosan dikurangkan, kekuatan, keupayaan daya ampu, dan rintangan persekitaran menurun apabila bahan menjadi semakin padat. Bagaimanapun, apabila kepadatan meningkatkan ketahanan kepada kejutan haba thermal (keretakan akibat pertukaran suhu mengejut) dan ciri-ciri penebatah dikurangkan. Banyak bahan digunakan dalam bentuk amat poros, dan ia bukannya satu perkara luar biasa untuk mendapati dua bahan digunakan: lapisan poros, dengan ciri-ciri penebat yang baik, dengan salutan nipis bahan lebih padat untuk membekalkan ketahanan.

Memeranjatkan bahawa bahan ini boleh digunakan pada suhu yang ia berada dalam keadaan separuh cair. Sebagai contoh, batu bata silika yang digunakan untuk melapis ketuhar menghasilkan besi digunakan pada suhu sehingga 1650°C (3000°F), di mana sebahagian batu bata akan cair. Mereka bentuk untuk situasi sebegitu tidak menghairankan jika ia memerlukan pengawalan yang agak terperinci mengenai semua sudut pembinaan dan kegunaan.

Penebat dan tingkah laku dielektrik

Kebanyakan bahan seramik tidak mempunyai pembawa cas boleh gerak, dan oleh kerana itu tidak mengalirkan elektrik. Apabila digabungkan dengan ketahanannya, keadaan ini mendorong kepada penggunaannya dalam penghasilan kuasa dan transmisi.

Talian kuasa sering disokong daripada pilon oleh cakera porcelain, yang cukup berpenebat untuk menangani panahan kilat, dan mempunyai kekuatan mekanikal untuk memegang kabel.

Sub-kategori ciri-ciri penebatnya ialah dieletrik. Dieletrik yang bagus akan mengekalkan medan elektrik melaluinya, tanpa menyebabkan kehilangan kuasa. Ciri ini adalah penting untuk penghasilan kapasitor. Dieletrik seramik digunakan dalam dua kawasan. Yang pertama ialah frekuensi tinggi kehilangan rendah dieletrik, diaplikasikan seperti ketuhar gelombang mikro dan pemancar radio. Yang lain ialah bahan dengan pemalar dieletrik tinggi (feroeletrik). Walaupun dieletrik seramik kurang elok berbanding pilihan lain untuk kebanyakan tujuan, ia memenuhi kedua-dua bahagian dengan baiknya.

Feroelektrik, piezoelektrik dan piroelektrik

Bahan feroelektrik ialah sesuatu yang boleh menghasilkan kepolaran secara spontan tanpa medan elektrik. Bahan ini menunjukkan medan elektrik kekal, dan ini merupakan sumber pemalar dielektrik yang amat tinggi.

Bahan piezoelektrik ialah bahan yang mana medan elektrik boleh ditukar atau dihasilkan dengan mengenakan tekanan kepada bahan tersebut. Ia digunakan dalam pelbagai kegunaan, khususnya sebagai transduker – menukar pergerakan kepada signal elektrik, atau sebaliknya. Ia digunakan dalam peranti seperti mikrophone, penjana ultrasound, dan pengukur tekanan.

Bahan piroelektrik menghasilkan medan elektrik apabila dipanaskan. Sesetengah pyroelektrik seramik amat sensitif sehinggakan ia dapat mengesan perubahan suhu disebabkan seseorang memasuki bilik (sekitar 40 mikro-Kelvin). Malangnya, peranti sedemikian tidak tepat, jadi ia sering digunakan secara berkembar – satu tertutup, satu terbuka – dan hanya perbezaan antara keduanya digunakan.

Semikonduktor

Terdapat beberapa jenis seramik yang merupakan semikonduktor. Kebanyakan daripadanya ialah oksida besi peralihan yang semikonduktor II-VI, seperti zink oksida.

Walaupun terdapat perbincangan untuk menghasilkan LED biru daripada zink oksida, pakar seramik lebih berminat akan ciri-ciri elektrik yang menunjukkan kesan sempadan bintik.

Peranti yang paling digunakan secara meluas ialah varistor. Peranti ini menunjukkan ciri-ciri luar biasa rintangan negetif. Apabila voltage melalui peranti ini mencapai tahap sempadan tertentu, terdapat kegagalan struktur elektrik dalam sekitar sempadan bintik, yang menyebabkan rintangan elektriknya menurun daripada beberapa mega-ohm turun kepada beberapa ratus sahaja. Kebaikannya ialah ia dapat mengyingkirkan banyak tenaga, dan reset secara sendiri - selepas voltage melintasi peranti itu turun di bawah batas, rintangannya kembali naik.

Ini menjadikan ia sesuai untuk aplikasi pelindung peningkatan. Kerana terdapat kawalan melebihi had voltan dan ketahanan kuasa, ia digunakan dalam pelbagai aplakasi. Demonstrasi terbaik mengenai kebolehannya adalah di substesen elektrik, di mana ia digunakan untuk melindungi infrastruktur daripada panahan kilat. Ia mempunyai tindakbalas pantas, penyelenggaraan mudah, dan tidak mudah rosak akibat penggunaan, menjadikan ia sebagai peranti terbaik untuk aplikasi ini.

Seramik semikonduktor juga digunakan sebagai pengesan gas. Apabila pelbagai gas melalui seramik polikristal, rintangan elektriknya bertukar. Peranti yang murah dapat dihasilkan apabila ia diselaraskan kepada campuran gas yang berkenaan.

Superkonduktiviti

Dalam sesetengah keadaan, seperti tahap suhu amat rendah, sesetengah seramik menunjukkan superkonduktiviti. Sebab sebenarnya tidaklah diketahui, tetapi terdapat dua keluarga utama seramik superkonduktiviti.

Tembaga oksida rumit diwakili oleh tembaga oksida Yttrium barium, sering diringkaskan kepada YBCO, atau 123 (menurut nisbah logam dalam formula stoichiometriknya [[YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub>]]). Ia amat terkenal kerana ia mudah dihasilkan, penghasilannya tidak membabitkan logam merbahaya, dan ia mempunyai suhu tahap superkonduktiviti pada 90K (yang lebih tinggi daripada suhu nitrogen cecair (77K). x dalam formula ini merujuk bahawa stoichiometrik sepenuhnya YBCO bukannya superkonduktor, jadi ia mesti dalam keadaan kurang oksigen sedikit, dengan x biasanya sekitar 0.3.

Keluarga utama lain bagi seramik superkonduktiviti ialah magnesium diborida. Pada masa ini ia terletak dalam keluarga tersendiri. Ciri-cirinya tidaklah mengagumkan sangat, tetapi secara kimia amat berlainan dengan superkonduktor yang lain dari segi ia bukannya tembaga oksida rumit ataupun logam. Disebabkan perbezaan ini, diharapkan kajian mengenai bahan ini kan memberikan kesedaran asas kepada phenomena superkonduktiviti.